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Overview

Distributing quantum computations across heterogeneous devices introduces communication and coordination costs that depend on both quantum and classical operations.
We present a novel abstraction called Hybrid Dependency Hypergraphs (HDHs) to model space, time, and type dependencies in distributed quantum execution.
This poster explores how HDHs support network-level reasoning about communication patterns, and how they can expose cost trade-offs across various quantum computational models.
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While this method is useful for today’s technology, it is exponentially costly.

- | o | Representing different quantum computation models with HDHs
2) Existing abstractions only support the quantum circuit model of computation.

One can think of HDHs as a hypergraph representing the state transformations through a quantum

. . . . . computation. This perspective enables the creation of mappings that translate operations from
3) No consideration of classical data, which has two undesirable consequences: different computational models to HDH mofifs.

1) Hybrid computations cannot be represented Quantum circuits
2) Natural cutting points arising from classical operations such as mid-circuit

_ Here are two examples of popular model mappings: Operation Motif
measurement are not considered Qubit initialization .
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Evaluation of HDH partitions Open source library
Partitions of HDHs can be evaluated through 3 main metrics: import hdh
o 0 o . . . . . i i hdh.models.circuit 1 ircui
o Partition size: the number of qubits or bits/cbits required to perform the sub-computation pip install hdh IFS$ hdh.ﬁisﬁaiigerimpzrtms?gt_ﬁdrzc '
« Communication cost: the number of hyperedges (classical or quantum) across the cut(s) circuit = Circuit()

o Parallelism, defined as >_win(ILNp:l, [RNpt)) given a set of L and R partitions and p operations across t timesteps . This
teT
means that the parallelisrﬁ created by a cut is the minimum amount of work performed by any two concurrently partitions.
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# Set of instructions
circuit.add_instruction("cecx", [0, 1, 2])
circuit.add _instruction("h"™, [3])
circuit.add _instruction("h"™, [5])
circuit.add _instruction("cx", [3, 4])
circuit.add_instruction("cx", [2, 11)
circuit.add_conditional_gate(5, 4, "z")
circuit.add_instruction("cx", [0, 31)
circuit.add _instruction("measure", [2])
circuit.add _instruction("measure", [4])

In the setting above for instance, parallelism contributions would follow: .
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hdh = circuit.build_hdh() # Generate HDH
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